М. В. Мальшев

профессор, доктор технических наук Московский инженерно-строительный институт имени В.В.Куйбылева, Москва, СССР

PACYET OCALOR OF THE METHOD C STATEMENT OF SABICUMOCTIVE METHOD HAMPSHERING IN A REMOVEMENT OF SABICUMOCTIVE METHOD OF THE METHO

Аннотация

В расчётной практике для определения напряжённого состояния оснований широко используются решения теории упругости, в которых предполагается линейная связь между напряжениями и деўормациями. В действятельности, как показывают многие экспериментальные исследования, связь эта нелинейная. Ниже излагается расчётный способ, позволяющий прогнозировать осадку фундамента за пределом линейной зависимости между напряжениями и деўормациями. Способ предлагается как оценочный сверху, то-есть дающий не преуменьшенные по сравненню с действительностью величини прогнозируемых осадок. Предлагаемая схема развивает способ эквивалентного слоя, предложенный ранее проф. П.А. цитовичем. Описиваемый расчётный способ представляется вежным для правильного учёта взаимодействия оснований и сооружений. основанных различными коммуникациями.

в предлагаемом способе расчёта осадки, который позволяет учесть нелинейную деформируемость грунта, вводятся две карактерные нагрузки: P_I — при которой в основании начинают образовиваться области с предельным состоянием и P_2 — при которой основание полностью теряет несущую способность. Осадку, соответствующую нагрузке P_I будем считать равной той, которая получается из решения для полушения пространства или из другого инженерного решения, например рекомендуемого в нормах /Сний, 1975/. Излагаемый здесь способ является дальнейшим развитием предложения, описанного нами ранее /Малинев, 1977/.

Нагрузка Р_І устанавливается из известной формулы, полученной Пузыревским и фрёлихом /цытович, 1963/

$$P_{i} = \frac{\pi \left(c \cdot (tg + \gamma h_{i})\right)}{ctg + \gamma - \frac{\pi}{2}} + \gamma h_{i}$$

где X — объёмний вес грунта основания, h_1 — величина заглубления фундамента в основание, C — удельное сцепление, Y— угол внутреннего трения грунта. Нагрузка P_2 может быть найдена по любому из существующих решений, например из формули Терцаги /1961/.

$$P_2 = \frac{1}{2} \mathcal{N}_{\chi} \chi \beta + \mathcal{N}_{\zeta} \chi \beta + \mathcal{N}_{\zeta} \chi \beta + \mathcal{N}_{\zeta} \zeta \qquad \qquad /2/2$$

где $\,^{\ell}\,$ — ширина фундамента, $\,\mathcal{N}_{q}\,$ и $\,\,\mathcal{N}_{c}\,$ — коэффициенты, устанав-

ливаемые из формул
$$\mathcal{N}_{q} = \frac{1 + Sin \mathcal{Y}}{1 - Sin \mathcal{Y}} \in \mathcal{N}_{q} - 1$$

$$\mathcal{N}_{c} = \left(\mathcal{N}_{q} - 1 \right) \operatorname{ctg} \mathcal{Y}$$
/3/

Коэффициент \mathcal{N}_{χ} установлен в результате численного решения и его значения приведены в Таблице I /промежуточные значения могут быть найдены путём интерполяции/.

Таблица I

 \mathcal{S}° 0 5 10 15 20 25 30 35 40 \mathcal{N}_{χ} 0 0.34 1.12 2.80 6.32 13.8 30.6 70.4 173.0

в предложенном расчётном способе, опирающемся на способ эквивалентного слоя, предложенный Цнтовичем /1963/, рассматривается массив грунта в форме параллеленинера или цилиндра, основанием которого служит подошва фундамента, а высота определяется исходя из равенства осадок при сжатии его сначала без возможности бокового расширения, а в последующем при ограниченном боковом расширении вплоть до достижения предельного состояния в грунте /Рис. I/.

При невозможности бокового расширения и при $P \leqslant P_{\frac{1}{2}}$ боковое давление оказывается равным

где \mathcal{N}_0 - коэффициент Пуассона грунта. При предельном состоянии, с использованием условия прочности Мора, имеем следующее соотновение между боковым Q_2 и вертикальным P_2 давлениями

ние между боковим
$$q_2$$
 и вертикальным P_2 давлениями
$$q_2 = \frac{1 - \sin \varphi}{1 + \sin \varphi} P_2 - \frac{2c \cos \varphi}{1 + \sin \varphi}$$
/5/

Таким образом, при изменении величини P в пределах $P_1 \le P \le P_2$ боковое давление q меняется в пределах q $\le q \le q$. В первом приближении между q и P принимается линейная зависимость

$$q = P \frac{q_2 - q_1}{p_2 - p_1} + \frac{p_2 q_1 - p_1 q_2}{p_2 - p_1}$$
 /6/

Puc. I Pacuëthas exema

Связь между напряжениями и деформациями описывается зависимостими Генки, аналогичными по записям зависимостям закона Гука, с той разницей, что модули сдвига — и объёмного скатия К являются не постоянными величинами, а зависят от инвариантов напряжений

$$C = \frac{T_{\text{OKM}}}{Y_{\text{OKM}}} = C \left(T_{\text{OKM}}, G_{\text{OKM}} \right), \quad K = \frac{G_{\text{OKM}}}{E} = K \left(T_{\text{OKM}}, G_{\text{OKM}} \right), \quad M$$
PIDE
$$T_{\text{OKM}} = \frac{1}{3} \sqrt{\left(G_1 - G_2 \right)^2 + \left(G_2 - G_3 \right)^2 + \left(G_3 - G_1 \right)^2},$$

$$Y_{\text{OKM}} = \frac{1}{3} \sqrt{\left(E_1 - E_2 \right)^2 + \left(E_2 - E_3 \right)^2 + \left(E_3 - E_1 \right)^2},$$

$$G_{\text{OKM}} = \frac{1}{3} \left(G_1 + G_2 + G_3 \right), \quad E = \frac{1}{3} \left(E_1 + E_2 + E_3 \right)$$

$$K = \frac{1}{3} \left(E_1 + E_2 + E_3 \right).$$

$$K = \frac{1}{3} \left(E_1 + E_2 + E_3 \right).$$

$$K = \frac{1}{3} \left(E_1 + E_2 + E_3 \right).$$

6.>6.>6.>6.>6.>6. — главние напряжения и \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 — главние деформации. Главные напряжения можно выразить через \mathcal{T}_{OKT} , \mathcal{E}_{OKT} , \mathcal{E}_{OKT}

Боткин /1940/ предложил использовать для модуля сдвига дробнолинейную функцию, которая в преобразованном применительно к напражениям вине оказывается следующей

$$G = \frac{A_i}{B_i} G_{cKM} + \frac{C_i}{B_i} - \frac{T_{cKM}}{B_i}$$
/II/

коэ рушиенты $\Lambda_{\mathbf{I}}$, $B_{\mathbf{I}}$, $C_{\mathbf{I}}$ – эмпирические. Аналогичным образом для модуля объёмного снатия запишем, что

где $A_{\mathcal{Z}}$ и $B_{\mathcal{Z}}$ – также эмпирические коэффициенты.

В предельном состоянии выражение /II/ обращается в нуль и из него получается условие прочности. Пользуясь зависимостями /10/ пля

$$G_1$$
 If G_3 , notythin
$$\mathcal{C}_{\text{okm}} = (G_1 - G_3) \frac{\sqrt{3 + v^2}}{3\sqrt{2}}, G_{\text{okm}} = \frac{G_1 + G_3}{2} + \frac{v}{6}(G - G_3)$$
/13/

после чего выражение / П./ можно преобразовать к следующему виду

$$G = \frac{\sqrt{2(3+\partial^2)} - \partial A_1}{3B_1} \left[\frac{3A_1}{\sqrt{2(3+\partial^2)} - A_1 \partial} \cdot \frac{G_1 + G_3}{2} + \frac{3C_1}{\sqrt{2(3+\partial^2)} - A_1 \partial} - \frac{G_1 - G_3}{2} \right] / 14/$$

Здесь выражение в квадратных скобках в предельном состояным должно обратиться в нуль. В то же время для предельного состояния имеем условие прочности Мора

$$\frac{6_1 + 6_3}{2} \sin \varphi + c \cdot \cos \varphi - \frac{6_1 - 6_3}{2} = 0$$
 /15/

Производя тождественное приравнивание коэффициентов при напря-

$$A_{i} = \frac{\sqrt{2(3+v^{2})} \sin \varphi}{3+v \sin \varphi}, \qquad B_{i} = \frac{\sqrt{2(3+v^{2})}}{2(3+v \sin \varphi)} G_{o}$$

$$C_{i} = \frac{\sqrt{2(3+v^{2})} \cdot c \cdot Ces \varphi}{3+v \sin \varphi}$$
/16/

Таким образом, из зависимостей /14/ и /16/ получаем

$$C = 2G_0 \left(\frac{G_1 + G_3}{2} Sin \beta + C \cdot Cos \beta - \frac{G_1 - G_3}{2} \right)$$
 /17/

Модуль сдвига должен быть равен

$$C_{i} = \frac{E_{o}}{1 + \mu_{o}}$$
/18/

это позволяет с учётом выражений /4/ и того, что $\mathfrak{S}_1 = P_{\mathbf{I}}$ и $\mathfrak{S}_3 = \mathfrak{S}_4$ найти величину $\mathfrak{S}_{\mathfrak{S}}$, которая оказывается равной

где \mathbb{F}_0 — подуль деформации групта в пределах линейного участка при $P \leqslant P_{\underline{I}}$. Очевидно, что в выражении /19/ знаменатель должен быть положительным, что при $\mathbf{c} = 0$ требует, чтобы коэффициент Пуассона был бы

 $y_0 \gg \frac{1 - \sin \varphi}{2}$

Подставив виражения /4/,/5/,/6/,/14/,/16/ и /19/ в /11/, подучим после преобразований для € достаточно простую зависимость

$$G = \frac{P_2 - P}{P_3 - P_1} G_1 = \frac{P_2 - P}{P_2 - P_1} \cdot \frac{E_0}{1 + M_0}$$
/21/

жинейная зависимость для модуля объёмного сжатия /12/ приводит к следующему простому выражению

$$K = K_o' \left(1 + \alpha \frac{P - P_i}{P_2 - P_i} \right)$$
 /22/

ОСЛИ

$$A_2 = \frac{K_e' \, d}{P_2 - P_1}$$
, $B_2 = A_2 \frac{\sqrt{2}(3 - \delta)}{2\sqrt{3 + \delta^2}}$

Модуль объёмного сжатия будет следулерым при карактерных давлениях

$$P = 0 , K = K'_{0} \left(1 - \alpha \frac{P_{1}}{P_{2} - V_{1}}\right)$$

$$P = P_{1} , K = K'_{0} = \frac{E_{0}}{1 - 2 J_{0}}$$

$$P = P_{2} , K = K'_{0} \left(1 + \alpha\right)$$
/24/

Из этих условий возможно найти \ll и K_{O} . Нереходим теперь непосредственно к вичислению осадки. В случае ограниченного бокового расширения вертикальная деформация \mathcal{E}_{Z} равна

$$\mathcal{E}_{z} = \frac{1}{E_{o}} \left[G_{z} - \mu_{o} \left(G_{x} + G_{y} \right) \right] = \frac{2K + G}{3KG} G_{z} - \frac{K - G}{3KG} \left(G_{x} + G_{y} \right) = \frac{1}{3G} \left(2G_{z} - G_{x} - G_{y} \right) + \frac{1}{3K} \left(G_{x} + G_{y} + G_{z} \right)$$

В выражение /25/ входят два боковых напряжения 6_{\times} и 6_{\times} . Одно из них определяется в рассматриваемом решении по выражению /6/, а второе может быть установлено из /9/ путём введения параметра 0_{\times} то-есть

$$q' = \frac{1}{2}(P-q) - \frac{P+q}{2} = \frac{1+1}{2}P + \frac{1-1}{2}q$$
 /26/

Для дальнейших преобразований выражения /25/ следует воспользоваться формулами /6/, /21/, /22/, /24/ и /25/. Подставив последние в /25/, будем иметь

$$\mathcal{E}_{z} = \frac{3 - \partial}{6E_{0}} \left\{ \frac{1 + \lambda_{0}}{P_{2} - P_{1}} \left[p \left(P_{2} - P_{1} \right) - Q_{2} \left(P - P_{1} \right) - Q_{1} \left(P_{2} - P \right) \right] + \frac{1 - 2 \lambda_{0}}{P_{2} - P_{1} + \mathcal{L} \left(P - P_{1} \right)} \left[\frac{3 + \partial}{3 - \partial} P \left(P_{2} - P_{1} \right) + Q_{2} \left(P - P_{1} \right) + Q_{1} \left(P_{2} - P \right) \right]$$

Осалка фундамента оказываеся равной

$$S = \varepsilon_z h$$
 /28/

где h определяется через осадку S_i , соответствующую давлению P_{\perp} и определяемую одним из известных способов, например способов, рекомендуемым в нормах /СНиП, 1975/

$$h = \frac{s_1 \cdot E_c (1 - \mu_c)}{P_1 (1 + \mu_c) (1 - 2\mu_c)}$$
/21/

формула /21/ рекомендуется для использования при $P_{\rm I} < P < P_{\rm 2}$. При $P = P_{\rm 2}$ мы получаем бесконечную сеадку, при $P = P_{\rm I}$ осадку, равную $S_{\rm I}$. Эта формула даёт не преуменьшенное значение осадки и поэтому она может служить оценочной сверку. Эта формула указывает на гиперболическую зависимость между осадкой и нагрузкой и имеет при $P = P_{\rm 2}$ вертикальную касательную, однако в действительности такой касательной наблюдаться не будет.

<u>Ірминер расчёта.</u> Фунцамент квадратный размерами 2×2 метра. Осадка $S_1 = 1.80$ см. модуль $E_0 = 15$ МРа. $M_0 = 0.3$, $M_0 = 0.2$, заглубление $h_1 = 150$ см. $M_0 = 18.0$ кН/м³. $M_0 = 20^{\circ}$. $M_0 = 20^{\circ}$. $M_0 = 20^{\circ}$.

Расчёт ведём следующим образом:

- по формуле /29/ находим h=165.7 см. Принимаем для квадратного фундамента 0=-1, то-есть случай осевой симметрии.

Вообще в первом приближении можно рекомендовать следующую формулу для внчисления δ , основанную на линейной интерполяции при $h = \ell / \ell$, где ℓ – длинная сторона фундамента и ℓ – короткая его сторона

$$\hat{V} = \frac{P(2\mu_0 n - n - 3\mu_0) + q(2 + 2n\mu_0 - n - \mu_0)}{(P - q)(n + \mu_0)}$$
/30/

- по формуле /I/ имеем $P_T = 0.196$ MPa.

- по формулам /2/, /3/ и Табл. I получаем $\mathcal{N}_{\rm V}$ = 6.39 , $\mathcal{N}_{\rm c}$ = 14.81 , $\mathcal{N}_{\rm Y}$ = 6.32 , откуда $\rm P_2$ = 0.583 MPa,

- по формулам /4/ и /5/ имеем $q_1 = 0.0839$ MPa, $q_2 = 0.258$ MF

- далее расчёт ведётся по формулам /27/ и затем /28/ при разных значениях Р . Результаты сведены в Таблицу 2 Табл. 2

P, MPa 0.196 0.3 0.4 0.5 0.55 0.583

S, cm 1.80 3.46 6.34 15.53 40.79 ∞

Подсчитаем также расчётное давление R по СПиП /1075/, которое при наших данных оказывается равным R=0.214 MPa.

Гезультаты расчетов инпострируются кривой /Рис. 2/.

Результаты изложенной работы позволяют провести прогноз осадки за пределом линейной зависимости между напряжениями и деформациями. Это представляется важным не только для расчёта самых фундаментов, но и наземных конструкций, а также коммуникаций. В частности, мы имеем возможность в каркасных зданиях замыкать каркас и придавать ему полную жёсткость после завершения деформаций, осуществлять замыкание трубопроводов и монтаж оборудования здания, информето отдельные фундаменты с учётом их осадки и т.д.

Расчётный способ, описанный выше, позволяет оценить взаимодействие основания и сооружения.

JUTEPATYPA

<u>СНиП /1975/.</u> Строительные нормы и правила. Пормы проектирования. Основания зданий и сооружений. Глава П-15-74, Стройиздат, Москва.

<u>Боткин А.И. /1940/.</u> О прочности сыпучих и хрупких материалов. Известия Паучно-исследовательского института гидротехники /НИИГ/, том & Ленанград.

Тернати К. /1961/. Теория механики грунтов /перевод/. Стройиздат.

<u>Дытович Н.А. /1963/.</u> Механика грунтов. Стройиздат, Москва.

Мальшев М.В. /1977/. Расчёт осадок фундаментов за пределом линейной зависилости между напряжениями и деформациями. Труди Пятой дунайской Европейской конференции по механике груптов и фундаментостроению. Том Ш. Братислава, ЧССР.

MAJINUEB M.B. /1968/, Фрацис Э.Д. Условия прочности песчаних ГрунTOB. Acta Technica Academiae Scientiarum Hungaricae Tomus 63 (1-4)
pp. 167-175. Proceedings of the 3-rd Budapest Conference on Scil
Mechanics and Foundation Engineering. Hungarian Academy of Sciences. Budapest.

